首页 > 窍门 > 汽车保养

双叉臂独立悬挂 双叉臂独立悬挂和多连杆独立悬挂

来源: 更新时间:2022-06-22 01:50:50
The Beginning

双叉臂独立悬挂

双叉臂式悬挂又称双A臂式独立悬挂,双叉臂悬挂拥有上下两个叉臂,横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大。双叉臂式悬挂的上下两个A字形叉臂可以精确的定位前轮的各种参数,前轮转弯时,上下两个叉臂能同时吸收轮胎所受的横向力,加上两叉臂的横向刚度较大,所以转弯的侧倾较小。双叉臂式悬挂通常采用上下不等长叉臂(上短下长),让车轮在上下运动时能自动改变外倾角并且减小轮距变化减小轮胎磨损,并且能自适应路面,轮胎接地面积大,贴地性好。双叉臂式悬挂运动性出色,为法拉利、玛莎拉蒂等超级跑车所运用。

发展历史

双叉臂式独立悬架有一个有趣的名字——双愿骨式悬架(Double wish bone)。据说这个有趣的名字来源于西方圣诞节上人们喜欢吃的一种火鸡的骨头,当人们开始吃的时候要对火鸡身上一根类似V字形的骨头许愿,而这根骨头就叫愿骨(Wish bone)。因为在双叉臂悬架结构中有两根“愿骨”,故得名双愿骨式悬架。   

双叉臂式悬架的诞生和麦弗逊式悬架有着紧密的血缘关系,它们的共同点为:下控制臂都由一根V字形或A字形的叉形控制臂构成,液压减震器充当支柱支撑整个车身。不同处则在于双叉臂式悬架多了一根连接支柱减震器的上控制臂,这样一来有效增强了悬架整体的可靠性和稳定性。    从结构上来看,麦弗逊悬架只有一根下控制臂和一根支柱式减震器, 结构上的最简单化使它的组成部件通常要一专多能。例如支柱减震器需充当转向主销,除要承受车辆本身的重量外,还要应对来自于路面的抖动和冲击。如果车辆在运动中,一侧的麦弗逊悬架受到惯性压缩,那么车轮的外倾角变化将增大,于是悬架越是压缩得厉害,这种形变就越是难以得到控制。所以麦弗逊悬架的应用范围多为小型或中型轿车,车型级别再往上走,结构简单的麦弗逊悬架便会有些力不从心了。

 

要改善麦弗逊悬架“脆弱”的特点,就有必要在悬架的组成结构上进行调整。由于麦弗逊悬架只有下控制臂和支柱减震器两个连接部件,这样一来就形成了一个“L”形的结构,如果能在“L”形顶端再增加一根控制臂,那么悬架的结构将得到加强。于是通过对麦弗逊悬架植入上控制臂,双叉臂式悬架结构便应运而生。双叉臂悬架相对麦弗逊悬架在物理学特性上的改变显而易见:当一侧悬架因惯性收缩时,车轮的外倾角变化也相对较小,不过车轮外倾角的变化大小还可以通过改变上下控制臂的相对长度来改善。因此,工程师在设计和匹配双叉臂悬架时自由度更大,更能针对汽车的某一种特性如运动或舒适性作出最为合理的调校。   

事实上,在车辆的底盘设计之初,设计师便开始考虑如何在底盘上布置复杂的悬架结构,给车辆带来更好的操控性或更平稳的舒适性。为了使车轮能随时随地贴合地面,达到运动性和乘坐舒适性的统一,设计师往往会采用双叉臂悬架结构,增加减震器阻尼和螺旋弹簧的硬度也是应对措施之一。在这点上,麦弗逊悬架会因为控制臂的单薄而使车轮外倾角增大,同时使车胎内侧负荷增大而加剧磨损。   由于传统的双叉臂悬架采用单导向结构,即上下控制臂与支柱减震器相连,实现对车轮上下运动方向的控制,转向拉杆和主销相连完成对车轮左右方向的控制。由此看来,减震和转向是由两个独立机构控制,但两个机构都只具备单导向性。随着悬架结构的不断优化改进,目前双叉臂悬架已衍生出可同时负责车轮转向和上下抖动的双向控制结构。在标致407上,前悬采用了名为“独立轴颈双叉前轮系统”的双向控制改进型双叉臂悬架。改进的悬架用转向节和转向节支架取代了只用上下控制臂来对车轮进行约束的状况,车轮转向通过安装在转向节支架间的转向节铰链完成。在带转向机构的前悬中,转向节支架连接着转向节球形铰链、稳定杆、液压减震器以及上下臂。车轮的跳动和转向分别由这两个新部件负责,新结构使每个零件承受的力较传统双叉臂要小很多,可靠性提高不少。此外动态效能也大为改善,新型双叉臂悬架获得了较小的主销倾角和外倾角,同时方向盘自动回正效果更明显。

构造原理

双叉臂式悬架由上下两根不等长V 字形或A字形控制臂以及支柱式液压减震器构成,通常上控制臂短于下控制臂。上控制臂的一端连接着支柱减震器,另一端连接着车身;下控制臂的一端连接着车轮,而另一端则连接着车身。上下控制臂还由一根连接杆相连,这根连杆同时也还与车轮相连接。在整个悬架构造中,通过对多个支点的连接提高了上下控制臂以及整个悬架的整体性。   

如果是前轮驱动的车型,那么装配在前轮上的双叉臂悬架在上下控制臂之间除装配有传动机构外,还有转向机构,这使得其结构比不带转向机构的后轮要复杂得多。在转向机构中,转向主销由转向托盘与上下控制臂的连接位置和角度确定,转向轮可绕主销转动,同时也可随下控制臂上下跳动。在双叉臂悬架中通常采用球头连接来满足前车轮的运动需要:上下控制臂与转向主销的连接部位既要支持前轮实现转向又要控制车轮的上下抖动。不过由于上下控制臂的长度差问题,这也对双叉臂悬架的设计提出了严峻的考验——如果上下控制臂的长度差过小,车轮抖动时会造成左右轮距偏大,加快轮胎外侧磨损;反之,如果上下臂长度差过大,则会造成车轮转向时外倾角过大,使轮胎内侧磨损加快。因此,可以通过增加上下控制臂的长度来减小轮距的变化和控制外倾角的变化。   

另外,双叉臂悬架的上下控制臂能起到抵消横向作用力的功效,这使得支柱减震器不再承受横向作用力,而只应对车轮的上下抖动,因此在弯道上具有较好的方向稳定性。素有“弯道之王”美誉的马自达6前悬采用的就是双叉臂悬架。因此,马自达6在弯道行驶时的侧倾较小,车身的整体感保持得非常好。

技术特点

优点

横向刚度大、抗侧倾性能优异、抓地性能好、路感清晰。   

首先,对于定位参数的精确控制,让车轮能够很好的紧贴地面,较强的横向刚性又提供了很好的侧向支撑,对于车辆的操控性能来说,这种结构的优越性是显而易见的,它不仅是法拉利,兰博基尼和玛莎拉蒂这些超级跑车们的首选,甚至是现今的F1赛车所使用的悬挂结构依旧能看到双叉臂的影子。而两根三角形结构的摇臂还拥有出色的抗扭强度和横向刚性,因此在硬派SUV或者皮卡上也经常会使用双叉臂的悬挂结构,而前双叉臂后整体桥的结构也是硬派越野SUV的经典结构。像是大切诺基,丰田普拉多和大众途锐等,前悬都用了双插臂的悬挂结构。

缺点

制造成本高、悬架定位参数设定复杂。   

相对于麦弗逊悬挂,它的结构更复杂,占用空间较大,成本较高,因此并不适用于小型车前悬挂,此外,定位参数的确定需要精确计算和调校,对于制造商的技术实力要求也比较高。


THE END

TAG:双叉臂独立悬挂  

猜你喜欢

相关文章